The Neurology of General Medicine

Dr Tim Lavin

Consultant Neurologist

Honorary Clinical Lecturer

Manchester Centre for Clinical Neuroscience

21/6/19

North of England Acute Neurology Update

@timlavin4
Tim.lavin@srft.nhs.uk

Content

- 3 case vignettes
- Opposite end of the Nervous System

Case 1

- 26yr old, R handed
- Psychology Graduate
- Working as a teacher in 4 yr in Asia, 1 yr in Vietnam
- Vegan
- Reports no illicit drug or risky sexual behaviour
- No preceding infection

- Presents with 8 weeks of
 - Fatigue
 - Mouth Ulcers
 - Ache across abdomen appendix removed
 - Loss of sensation in feet

Acute worsening over 1 week

Poor balance

Difficulty mobilising

Ascending paraesthesia to knees and

hands

Bilateral leg weakness

Normal sphincter

Further Hx

- ½ stone of weight loss
- No fever
- No rash/arthralgia
- Mouth ulcer but not genital ulcers
- No CVS/Renal/Resp/GU
- No insect bites

Investigated by Neurologist in Vietnam

"French Name"

Normal EMG and MR Spine

Clinical Examination

Higher Mental Function N CN included VA, fields and fundi N Gait Ataxic

		R	L
Insp	UL	Pseudoathetosis	
	LL		
Tone	UL	N	N
	LL	N	N
Power	UL	5	5
	LL	5	5
Coord	UL	Ataxic	Ataxic
	LL	Ataxic	Ataxic
Reflexes	UL	+	+
	LL	-	-
Plantar		UP	UP
Clonus		6 beats	6 beats

		R	L
PP	UL	Wrist	Wrist
	LL	Thigh	Thigh
Vib	UL	Wrist	Wrist
	LL	ASIS	ASIS
JPS	UL	PIP	PIP
	LL	Knee	Knee

Clinical Examination

Higher Mental Function N
CN included VA, fields and fundi N
Gait Ataxic

		R	L
Insp	UL	Pseudoathetosis	
	LL		
Tone	UL	N	N
	LL	N	N
Power	UL	5	5
	LL	5	5
Coord	UL	Ataxic	Ataxic
	LL	Ataxic	Ataxic
Reflexes	UL	+	+
	LL	-	-
Plantar		UP	UP
Clonus		6 beats	6 beats

		R	L
PP	UL	Wrist	Wrist
	LL	Thigh	Thigh
Vib	UL	Wrist	Wrist
	LL	ASIS	ASIS
JPS	UL	PIP	PIP
	LL	Knee	Knee

Where is the Lesion

- A. Central
- B. Peripheral
- C. Both
- D. Neither she is functional

Where is the Lesion

- A. Central
- B. Peripheral
- C. Both
- D. Neither she is functional

Where is the lesion- Single best Answer

- A. Cortex and peripheral nerve
- B. Subcortical White Matter and Peripheral Nerve
- C. Brainstem and Peripheral Nerve
- D. Cord and Peripheral Nerve
- E. Cord and Sensory Neuron

Where is the lesion- Single best Answer

- A. Cortex and peripheral nerve
- B. Subcortical White Matter and Peripheral Nerve
- C. Brainstem and Peripheral Nerve
- D. Cord and Peripheral Nerve
- E. Cord and Sensory Neuron

Myeloneuropathy

- Hb 130
- WCC 7, normal diff
- Plt 240
- U+E and LFT N
- HIV N
- Hep N
- Syphilis N
- Folate 15
- CRP and ESR N

- Normal CXR
- Normal 12 lead ECG
- Normal Spirometry

Vit B12 213 (211-911ng/L)

CSF Analysis

No cells Normal Protein and Glucose Ratio Negative Virology

NCS

Abnormal study.

There is a sensory neuropathy. There is a suspicion of a non-length dependent pattern with, at least, an equal degree of attenuation of upper limb digital sensory responses and lower limb sensory responses.

Any other tests?

- Methylmalonic Acid 0.48 (<0.42)
- Homocysteine 42.8 ng/L (0–12)

B12 Deficiency

- Vitamin B₁₂ deficiency is relatively common, affecting up to 6% of those aged under 60 years and around 20% of those over 60 years in the UK and USA
- Megaloblastic Anaemia , Glossitis, Depression/Mania , Infertility ,
 Thrombosis (high homocysteine)
- Anaemia appears inversely correlates to neurological dysfunction
- pernicious anaemia, gastric and intestinal malabsorption, pancreatic insufficiency, malnutrition and various drugs including alcohol and proton pump inhibitors

Neurological Manifestations of B12 deficiency

- Essential for
 - Development and Maintenance of Myelin
- Affects
 - Optic Nerves
 - Dorsal Column of Cord (and lateral to lesser degree)
 - Peripheral Nerve (demyelination and axonal loss)
- Optic Neuropathy, Myelopathy (dorsal column) or Peripheral Neuropathy or combination

Problem with B12 testing

- False negative and false positive results at a rate of up to 50%
- Elevated Methylmalonic acid (MMA) and plasma homocysteine levels can be used as surrogate measures for vitamin B₁₂ deficiency
- MMA is more specific
- Homocysteine can be increased in renal failure, folate deficiency

Key Points

- NO use is common in young people, rarely volunteered
- Ask about diet
- Functional B12 deficiency requires additional tests (MMA and Homocysteine)
- serum B12 is not perfect- suspect if low normal or risk factor
- Presentations can be dramatic and severe, mimicking inflammatory demyelination
- Remember COPPER in older people

- 62 yr old men
- Referred to MAU
- 6/52 of
 - Diffuse heaviness of the limbs
 - Unbalanced
 - Paresthesia affecting feet and hand
 - Left hand worse then R.
 - Gradually worsening, but ambulant
- Over past 2/7
 - Bedbound with diffuse limb weakness
 - No sensory loss
 - No sphincter/ No autonomic/ No bulbar/No ocular
 - Systemically no change
 - Severe Neuropathic pain in feet

Exam

- Higher cortical function normal
- Mild bilateral facial weakness
- Bulbar/tongue/palate/uvula normal
- EOM full
- Areflexic
- Wasted interossei
- Vibration to knee
- JPS lost at hallux
- PP lost to thigh
- Lost to Wrist on R and elbow on L

	R	L
SA	3	3
EF	3	2
EE	4	4
WF	3	1
FDIO	3	1
ADM	3	1
FDP	4	2
HF	2	2
KF	3	3
KE	2	2
ADF	0	0

Where is the Lesion

- A. Hemispheric Lesion
- B. Cervical Cord
- C. Polyradiculopathy
- D. Polyneuropathy
- E. Neuromuscular Junction

Where is the Lesion

- A. Hemispheric Lesion
- B. Cervical Cord
- C. Polyradiculopathy

Next test?

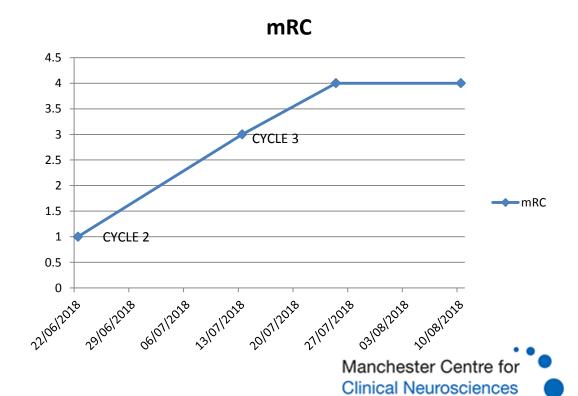
- D. Polyneuropathy
- E. Neuromuscular Junction

Investigations

- CSF Protein 2.05g No cells, Normal cytology. CSF viral PCR inc CMV
- HIV/Hep Neg
- CRP 20
- NCS: Severe bilateral, asymmetrical sensorimotor neuropathy. Mixed axonal demyelinating features

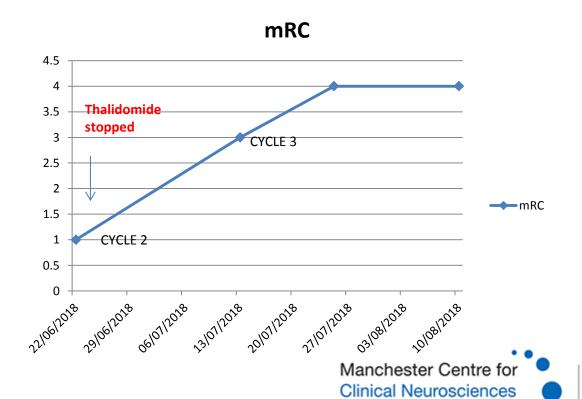
More History

- Known Kappa light chain myeloma
- Elevated free kappa light chains
- What additional history would we like?



Investigations

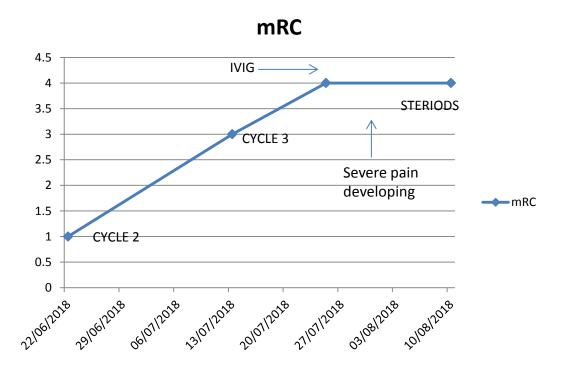
- MRI with contrast of spine: no change
- Free kappa light chains fallen from 3000 to 400


Velcade/Cyclophosphamide/Dex/Thalidomide- 2 cycles

Salford Royal **NHS**

NHS Foundation Trust

Velcade/Cyclophosphamide/Dex- cycle 3



Primary Demyelinating Neuropathy with secondary axonal injury

Treatment and Progress

Treated as GBS like syndrome- poor response.

Latterly developed severe neuropathic pain

Summary

Subacute demyelinating neuropathy due to Velcade

Toxic Neuropathy

- In General
 - Length Dependent
 - Axonal
 - Painful
 - Dose dependent (cumulative)

- Common Culprits
 - Chemotheurapeutics
 - Amiodarone
 - Allopurinol
 - Phenytoin
 - Alcohol

ACUTE NUTRITIONAL AXONAL NEUROPATHY

JOHANNA HAMEL, MD and ERIC L. LOGIGIAN, MD

University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA Accepted 23 May 2017

- Mimic GBS
- Post BariatricSurgery
- Alcoholics
- Anorexia
- Multiple defiencies

Case 1

67yr old- previously well

Initially presented in 2014 with a

- 4 month history of ascending sensory disturbance (numbness, paraesthesia and neuropathic pain)
- sensory ataxia
- mild LL proximal and distal weakness, but mobile with frame.
- No sphincter disturbance,
- Examination demonstrated symmetrical findings
 - Normal UL
 - LL areflexia
 - Vib to iliac crest
 - JPS lost at toes
 - PP lost to mid thigh

Results

- NCS suggests demyelinating neuropathy
- CSF protein 2.7g
- IgG Lambda band small, unquantifiable
 - normal bone marrow
 - Normal skeletal survey
- CT TAP small mesenteric nodes and root oedema

Progress

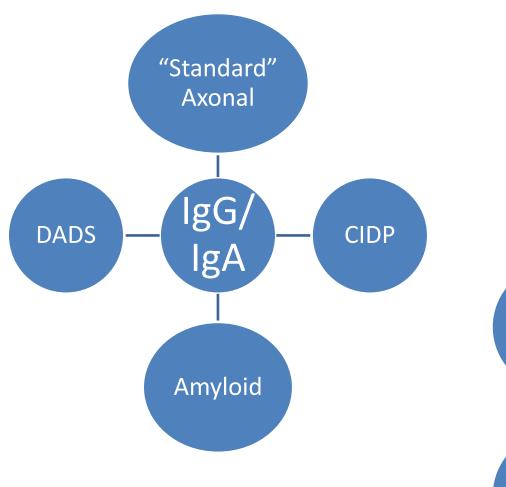
- Treated as CIDP
- Independently mobile
- Mesenteric nodes and oedema resolved on repeat
 CT

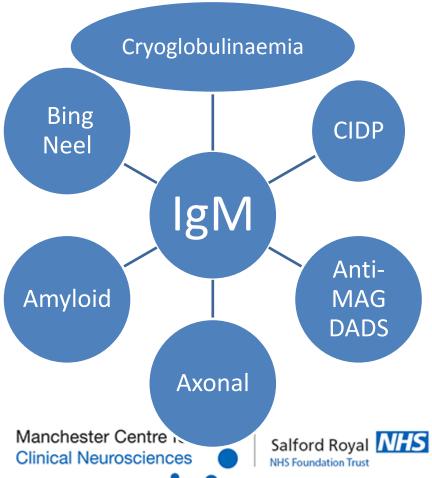
- This deteriorated clinically and electrophysiologically after 3-4 months
- Started on Mycophenolate 1500 bd and steroids again appears to be clinical improvement
- No reported change over following year

What is the relevance of the IgG lambda

MGUS vs Myeloma (or Waldentroms)

- IgG/IgA MGUS defined by
 - < 30g/l
 - BJP <1g/24hr
 - No lytic/sclerotic lesions
 - No anaemia, renal disease, hypercalcaemia
 - Plasma cell infiltration <10%




- Therefore MGUS
- What is the relevance of MGUS to Neuropathy?

Paraproteinaemic Neuropathies

- 10% of patients with sensorimotor neuropathy have MGUS
- **30-70% of patients** with MGUS will have neuropathy
- 3.5% myeloma patients pre Rx

General Deterioration

- Develops swallow ulcers of the lower leg secondary to PVD
- Pedal Oedema
- General Malaise
- Skin changes
- More falls- advanced CVD

Haematology

- Low B12- 110
- Low Plts around 120
- Low level lambda band- but no concerns raised

Endocrine

- Hypothyroid
- Adrenal insufficiency (steroids)
- Hirsute

Repeat Bone Marrow

 Normocellular for age.
 Megakaryocytes increased, left shifted. Conclusion: No evidence of myeloma or lymphoproliferative disorder F

- Trephine:
- There is active haempoiesis with megakaryocyte expansion. The latter show some morphological changes and occasional small cluster

• VEGF: 1658 (N < 700)

In Summary

- Polyneuropathy
- Lymphadenopathy
- Endocrinopathy
- M protein
- Skin changes
- Unexplained low B12, fracture, oedema and previous mesenteric nodes

- Polyneuropathy
- Lymphadenopathy (Organomegaly)
- Endocrinopathy
- M protein
- Skin changes
- Unexplained low B12, fracture, oedema and previous mesenteric nodes

Diagnosis:

POEMS syndrome secondary to plasmacytoma/osteosclerotic myeloma

POEMS syndrome diagnostic criteria

Polyneuropathy and monoclonal plasma cell disorder present in all patients; to make diagnosis at least one other major criterion and 1 minor criterion is required.

Major Criteria

- Polyneuropathy
- Monoclonal plasma cell disorder (almost always λ – 95%)
- Sclerotic bone lesions
- Castleman disease
- VEGF elevation

Minor Criteria

- Organomegaly (spleno-, hepato- or lymphadenopathy)
- Oedema, pleural effusion or ascites
- Endocrinopathy (adrenal, thyroid, pituitary, gonadal, parathyroid, pancreatic*
- Skin changes (pigmentation, nails, hair, plethora, cyanosis)
- Papilloedema
- Thrombocytosis or polycythaemia**

Other symptoms or signs

- Clubbing
- Weight loss
- Diarrhoea
- Low vitamin B12
- Pulmonary hypertension or restrictive lung disease
- Thrombotic episodes
- Hyperhydrosis

Possible associations

- Arthralgia
- Cardiomyopathy
- Fever

Lessons from Case

For the Neurologist: Early testing VEGF, look for systemic clues

- For the Physician:
 - Be wary of blind obedience!
 - we get it wrong, we miss the systemic clues!
 - investigate the medical clues if we don't.

What we have learnt

- B12 deficiency- its neurological presentation and investigation
- The spectrum of chemotherapy induced neuropathy
- MGUS and how it affects the peripheral nerves
- How in rare syndromes- systemic clues such as haematological, dermatological, endocrine are vital

